

None of these

(D)

Level - 1

Permutation & Combination

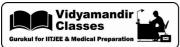
(C)

(n+1)! - 1

Miscellaneous Question Bank

(n + 1)!

The value of $1.1! + 2.2! + 3.3! + \dots + n.n!$ is:


(B)

(n+1)! + 1

1.

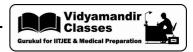
(A)

2.	The number of the factors of 20! is:										
	(A)	4140	(B)	41040	(C)	4204	(D)	81650			
3.		umber of ways	of dis	tributing 8 ide	ntical b	oalls in 3 distii	nct box	tes so that none of the			
	(A)	3^{8}	(B)	21	(C)	5	(D)	${}^8\mathrm{C}_3$			
4.	Three	dice are rolled.	The nu	umber of possib	ole outc	omes in which	at leas	t one die shows 5 is:			
	(A)	215	(B)	36	(C)	125	(D)	91			
5.		ee-digit number number of ways		•		0 0	its 0, 1	, 2 with repetition. The			
	(A)	4	(B)	5	(C)	9	(D)	6			
6.	_	ght-digit numbe 6, 7, 8, 9 withou 9!		•		•	_	t of the digits 0, 1, 2, 3, can be done is: (36) (7!)			
7.		nmittee of 12 is if at least five w					n how i	many ways this can be			
	(A)	5062	(B)	6062	(C)	7062	(D)	8062			
8.	The r	esults of 21 fo	otball	matches (win,	lose or	draw) are to	be pre	dicted. The number of			
	foreca	forecasts that contain exactly 18 correct results is:									
	(A)	$^{21}C_3 \ 2^{18}$	(B)	$^{21}C_{18} \ 2^3$	(C)	$3^{21} - 2^{18}$	(D)	$^{21}C_3 \ 3^{21} - 2^{18}$			
9.	In a c	eity no two per	sons h	ave identical s	et of te	eth and there	is no p	erson without a tooth.			
	Also,	no person has	more	than 32 teeth	. If we	disregard the	shape	and size of tooth and			
	consid	der only the pos	sitionin	g of the teeth, t	hen the	e maximum po	pulatio	n of the city is:			
	(A)	2^{32}	(B)	$(32)^2 - 1$	(C)	$2^{32} - 1$	(D)	2^{32-1}			

10.	vote	At an election there are five candidates and three members are to be elected, and a voter may vote for any number of candidates not greater than the number to be elected. The number of ways in which the person can vote is:										
			_		(5)	0.	(-)	25 23				
	(A)	25	(B)	30	(C)	35	(D)	$2^{5}-2^{3}$				
11.	Ther	e are three p	oigeon hol	es marked <i>I</i>	М, Р, С. Tl	ne number of	ways i	n which we can p	ut 12			
	letter	s so that 6 o	f them are	e in M , 4 are	in P and 2	are in C is:						
	(A)	2520	(B)	13860	(C)	12530	(D)	25220				
12.			-	_		linary pack o	f playing	g cards so that exa	actly 3			
		em are of the				50						
	(A)	2496	(B)	$^{13}C_3 \times ^{4}C_3$	₃ × 48 (C)	$^{52}C_3 \times 48$	(D)	None of these				
	free comb		ne gets e	exactly one				word TIDE, he ge er of different po				
	(A)	$^{7}C_{3}-1$	ne coupoi		$C_4 - 1$	(C) ⁸ C ₃		(D) 4 ⁴				
14		$^{7}C_{3}$ –1		(B) 8 <i>C</i>	•	Ü	a 3 diffe	,	hat in			
14.	The 1	⁷ C ₃ −1 number of w	ays in wh	(B) 8C	•	Ü	ı 3 diffe	(D) 4 ⁴ rent boxes such t	hat in			
14.	The revery	$^{7}C_{3}$ - 1 number of we box at least	ays in wh 2 balls ar	(B) ⁸ C ich we can pre placed is:	place 9 dif	ferent balls in		,	hat in			
	The revery (A)	$^{7}C_{3}$ -1 number of w box at least 11508	ays in wh 2 balls ar (B)	(B) ⁸ C sich we can pre placed is: 11608	place 9 dif	ferent balls in	(D)	rent boxes such t				
14. 15.	The revery (A)	$^{7}C_{3}$ - 1 number of w box at least 11508 ber of ways i	ays in wh 2 balls ar (B) n which A	(B) ⁸ C sich we can pre placed is: 11608	place 9 dif	ferent balls in	(D)	rent boxes such t				
	The revery (A) Num no re	⁷ C ₃ -1 number of w box at least 11508 ber of ways i	ays in wh 2 balls ar (B) n which A	(B) ⁸ C sich we can pre placed is: 11608	place 9 diff (C) be placed	ferent balls in 12508 in the square	(D)	rent boxes such t				
	The revery (A) Num no ro (A)	7C_3 -1 number of work at least 11508 ber of ways in the second se	ays in wh 2 balls ar (B) n which A	(B) ⁸ C sich we can pre placed is: 11608	(C) be placed (B)	ferent balls in 12508 in the square	(D) s of the	rent boxes such t				
	The revery (A) Num no re	⁷ C ₃ -1 number of w box at least 11508 ber of ways i	ays in wh 2 balls ar (B) n which A	(B) ⁸ C sich we can pre placed is: 11608	place 9 diff (C) be placed	ferent balls in 12508 in the square	(D) s of the	rent boxes such t				
	The revery (A) Num no ro (A) (C)	$^{7}C_{3}$ - 1 number of we box at least 11508 ber of ways in the second se	ays in who 2 balls ar (B) n which Ampty, is:	(B) ⁸ C lich we can preplaced is: 11608 AABBB can	place 9 diff (C) be placed (B) (D)	ferent balls in 12508 in the square	(D) s of the	rent boxes such t 12608 figure as shown s				
15.	The revery (A) Num no ro (A) (C)	$^{7}C_{3}$ - 1 number of work to box at least 11508 ber of ways in the second seco	ays in who 2 balls are (B) and which A mpty, is: $n_4 < n_5$ be	(B) 8C ich we can per placed is: 11608 AABBB can	(C) be placed (B) (D) egers such	ferent balls in 12508 in the square 2160 None of the	(D) so of the see $+n_3+n_4$	rent boxes such t 12608 figure as shown s				

17. The number of subsets of a set containing n distinct objects is:

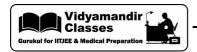
 ${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + \ldots + {}^{n}C_{n-1}1$ $^{n}C_{0} + ^{n}C_{1} + \ldots + ^{n}C_{n}$ (C) **(D)**


 $2^{n} + 1$

The number of 10-digit numbers that can be written by using the digits 0 and 1 is: $2^{10} - 2$ 2^{10} 2^9 (C) **(D)** (A) **(B)** 10!

18.

(A)


 $2^{n}-1$

	with t	the other are:						
	(A)	9	(B)	10	(C)	8	(D)	12
20.	If ²ⁿ⁺	$^{-1}P_{n-1}:{}^{2n-1}F$	$p_n = 3:5$	then n equal	s:			
	(A)	5	(B)	4	(C)	3	(D)	2
21.	The n	number of way	ys in whi	ch 9 persons	can be di	vided into thr	ee equal	groups is:
	(A)	280	(B)	840	(C)	560	(D)	1680
22 .	How	many numbe	rs greate	r than 40000	can be fo	rmed from th	e digits 2	2, 4, 5, 5, 7?
	(A)	12	(B)	24	(C)	36	(D)	48
23 .	The n	number of sub	osets of {	1, 2, 3,, 9}	containir	ng atleast one	odd nun	nber is:
	(A)	324	(B)	396	(C)	496	(D)	512
24.	If ¹⁶ 0	$C_r = {}^{16}C_{r+2}, t$	hen $^rP_{r-}$	₃ equals:				
	(A)	31	(B)	120	(C)	210	(D)	840
25 .	The n	number of sev	en-digit 1	numbers with	sum of t	he digits equa	al to 10 a	and formed by using the
	digits	1, 2 and 3 or	nly, is:					
	(A)	55	(B)	66	(C)	77	(D)	88
26 .		_			_	ifference in c vhite, 9 green		the number of ways in lack balls is:
	(A)	880	(B)	629	(C)	630	(D)	879
27 .	State	ement 1: The	number	of ways of d	istributir	ng 10 identica	l balls ir	n 4 distinct boxes such
	that 1	no box is emp	oty, is ⁹ C	3 ·				
	State	ement 2: The	number	of ways of ch	oosing an	y 3 places fro	m 9 diffe	erent places is 9C_3 .
	(A)	Statement-	1 is True	e, Statement-	2 is True	and Statemen	nt-2 is a	correct explanation for
		Statement-	1					
	(B)	Statement- for Stateme		, Statement-2	is True a	and Statemen	t-2 is NC	OT a correct explanation
	(C)	Statement-	1 is True	, Statement-2	l is False			
	(D)	Statement-	1 is False	e, Statement-	2 is True			
28.	There	are 10 poin	ts in a p	olane, out of	these 6 a	are collinear.	If N is t	he number of triangles
	forme	ed by joining t	these poi	nts, then:				
	(A)	<i>N</i> > 190	(B)	$N \le 100$	(C)	$100 < N \le 14$	40 (D)	$140 < N \le 190$

In a cricket championship, there are 36 matches. The number of teams, if each plays 1 match

19.

29. From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is:

(A) at least 500 but less than 750 (B) at least 750 but less than 1000

(C) at least 1000 (D) less than 500

30. In a shop, there are five types of ice-creams available. A child buys six ice-creams.

Statement 1: The number of different ways the child can buy the six ice-creams is ${}^{10}C_3$.

Statement 2: The number of different ways the child can buy the six ice-creams is equal to the number of different ways of arranging 6A's and 4B's in a row.

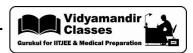
- (A) Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1
- **(B)** Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (**D**) Statement-1 is False, Statement-2 is True
- **31.** At an election, a voter may vote for any number of candidates not greater than the number to be elected. There are 10 candidates and 4 are to be elected. If a voter votes for atleast one candidate, then the number of ways in which he can vote, is:

(A) 6210 **(B)** 385 **(C)** 1110 **(D)** 5040

32. The range of the function $f(x) = {}^{7-x}P_{x-3}$ is:

(A) {1, 2, 3} **(B)** {1, 2, 3, 4, 5, 6}

(C) {1, 2, 3, 4} **(D)** {1, 2, 3, 4, 5}


- **33.** In how many ways 5 persons can sit at a round table, if two of the persons do not sit together?
- 34. In a conference 10 speakers are present. If S_1 wants to speak before S_2 and S_2 wants to speak after S_3 , then the number of ways all the 10 speakers can give their speeches with the above restriction if the remaining seven speakers have no objection to speak at any number is:

(A) ${}^{10}C_3$ (B) ${}^{10}P_8$ (C) ${}^{10}P_3$ (D) $\frac{10!}{3}$

35. A family consists of a grandfather, 5 sons and daughters and 10 grandchildren. They are to be seated in a row for dinner. The grandchildren wish to occupy the 5 seats at each end and the grandfather refuses to have grandchildren on either side of him. In how many ways can the family be made to sit?

(A) $4 \times 5! \times 10!$ **(B)** $5 \times 5! \times 10!$

(C) $4 \times 4! \times 10!$ (D) $9! \times 5! \times 4$

*36.	If n objects are arranged in a circle, then the number of ways of selecting three of these objects
	so that no two of them are next to each other is:

(A)
$$\frac{(n)(n-4)(n-5)}{6}$$

(B)
$$\frac{n}{3} \times {}^{n-4}C_2$$

(C)
$$^{n-2}C_3 - ^{n-4}C_1$$

(D) None of these

- *37. A professor tells 3 jokes in his class each year. In order not to repeat the same triple jokes over a period of 12 years, minimum number of jokes he needs to have with him.
- *38. Number of ways in which 30 identical things are distributed among six persons is:
 - (A) $^{17}C_5$ if each gets odd number of things
 - **(B)** $^{16}C_{11}$ if each gets odd number of things
 - (C) $^{14}C_5$ if each gets even number of things (excluding 0)
 - **(D)** $^{15}C_{10}$ if each gets even number of things (excluding 0)
- *39. If *N* denotes the number of ways of selecting *r* objects out of *n* distinct objects $(r \ge n)$ with unlimited repetition but with each object included at least once in selection, then *N* is equal to:

(A)
$$r^{-1}C_{r-n}$$

(B)
$$^{r-1}C_n$$

(C)
$$r^{-1}C_{n-1}$$

- **(D)** None of these
- *40. If n is the number of necklaces which can be formed using 17 identical pearls and two identical diamonds and similarly m is number of necklaces which can be formed using 17 identical pearls and 2 different diamonds, then:

(A)
$$n = 9$$

(B)
$$m = 18$$

(C)
$$n = 18$$

(D)
$$m = 9$$

*41. There are 10 students of which 2 are brothers. The number of ways in which they can be seated at a circular table if exactly 2 students sit between the brothers is:

(A)
$${}^8C_4 \times |4 \times |6|$$

(B)
$${}^{8}C_{2} \times |6 \times |2 \times |2|$$

(C)
$${}^8P_2 \times \underline{6} \times \underline{2}$$

(D)
$${}^{8}P_{4} \times \underline{6}$$

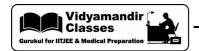
*42. 5 men and 4 women are to be seated around a circular table so that women are always separated. The number of ways of doing so is:

(A)
$$|5 \times |4|$$

(B)
$$\left(\underline{4}\right)^2 \times$$

$$(\underline{4})^2 \times 5$$
 (C) $(\underline{5})^2 \times 6$ (D)

(D)
$$\underline{6} \times \underline{5}$$


*43. The number of ways of arranging 10 persons around a circular table so that 3 particular persons are always together is:

(A)
$$10 \times 3$$

(B)
$$9 \times 60$$

(D)
$$\underline{6} \times 42$$

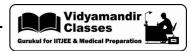
- *44. Number of points of intersection of *n* straight lines if *n* satisfies $^{n+5}P_{n+1} = \frac{11(n-1)}{2} \times^{n+3} P_n$ is:
 - **(A)** 15
- **(B)** 28
- **(C)** 21
- **(D)** 10

*45.	If nC_4	n C_{5} and n C_{6}	are in A	.P., the value o	f n can	be:		
	(A)	14	(B)	11	(C)	7	(D)	8
		11(n-1)	1					
*46.	If $^{n+5}$	$P_{n+1} = \frac{11(n-1)}{2}$	$^{n+3}P_n$, then the valu	e of n is	s:		
	(A)	7	(B)	8	(C)	6	(D)	5
*47.	The ex	xponent of 12 ir	n 100! i	s:				
	(A)	32	(B)	48	(C)	$^{7}P_{2}-10$	(D)	$^{8}P_{2}-8$
						_		2
48.	The nu zero.	umber of seven	- digit 1	numbers, with	sum of	the digits equa	al to 9 a	and that don't contains
	(A)	25	(B)	26	(C)	28	(D)	27
Paragi		r Questions 49			(-)		(-)	
1 urugi	_	der all possible		ations of the le	tters of	the word FND	FANOF	ĭ
		-	-				LANOL	
49 .		umber of permu		_				
	(A)	5!	(B)	$2 \times 5!$	(C)	$7 \times 5!$	(D)	21×5!
50 .	The n	umber of permu	utations	s in which the l	etter E	occurs in the fi	rst and	the last positions, is:
	(A)	5!	(B)	$2 \times 5!$	(C)	$7 \times 5!$	(D)	$21 \times 5!$
5 1.	The n	umber of pern	nutatio	ns in which n	one of	the letters D .	L. No	occurs in the last five
		ons, is:				,	,	
	(A)	5!	(B)	$2 \times 5!$	(C)	$7 \times 5!$	(D)	$21 \times 5!$
52 .	The n	ımber of permi	itations	s in which the l	etters A	. E. O occur or	nly in oc	ld positions, is:
	(A)	5!	(B)	$2 \times 5!$	(C)	$7 \times 5!$	(D)	21×5!
Paragi		r Questions 53					, ,	
	_	_		st row of a thea	atre of v	which 4 are to l	he occii	pied. Find the number
		s of arranging				vincii i die te i	oc occu	pica. I ma the mamber
53 .	No two	o persons sit si	de by si	de.				
	(A)	3022	(B)	3244	(C)	3246	(D)	3024
54 .	There	should be atlea	ast 2 en	npty seats betw	een any	two persons		
	(A)	360	(B)	340	(C)	320	(D)	380
55 .	Each 1	person has exa	ctly one	neighbour.				
	(A)	800	(B)	760	(C)	864	(D)	480
Parag ₁	raph fo	r Questions 56	<u> 6 – 57</u>					
		nany seven-let	ters wo	rds can be for	med by	using the lett	ers of t	the word SUCCESS so
E.C	that:	ro C are to sott	on b+	ot two C are to	anth and			
56 .		vo C are togethe			_		(D)	10
	(A)	24	(B)	32	(C)	20	(D)	18
57.	No two	C and no two	S are to	ogether?				

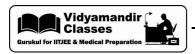
(A)

90

92


(D)

(B)


94

(C)

96

Misc	cellane	ous Questio	n Bank							Level – 2
		(, , , , , ,)		_						
58 .	Let S	$S = \{1, 2, 3, 4\}.$	then the r	numbe	er of orde	ered pai	rs of disjoin	it subsets o	of S is:	
	(A)	40	(B)	81		(C)	42	(D)	41	
59 .	In an	examination	n the maxi	mum	marks fo	or each	of three pa	pers is n a	nd that	for fourth paper
	is 2n	. Then the n	umber of v	vays i	n which a	a candi	date can ge	3n marks	is:	
	(A)	$\frac{1}{6}(n-1)(5$	$5n^2 + 10n +$	6)		(B)	$\frac{1}{6}(n+1)$	$5n^2 + 10n$ -	+ 6)	
	(C)	$\frac{1}{6}(n+1)(5$	$5n^2 + n + 6$)		(D)	None of t	hese		
60.		number of pe			he letters	s of the	word HIND	USTAN su	ch that	neither 'HIN nor
	(A)	166674	(B)		194	(C)	166680	(D)	1814	34
61.	Six c	ards and si	x envelone	es are	numbe	red 1	2 3 4 5	6 and car	ds are	to be placed in
	Six cards and six envelopes are numbered 1, 2, 3, 4, 5, 6 and cards are to be placed in envelopes so that each envelope contains exactly one card and no card is placed in the									
		_		_			•			always placed in
		ope bearing ope number							1 13 6	aways placed in
		_				•			67	·O
	(A)	264	(B)	265		(C)	53	(D)	67	
62 .	_						_	ctly three	elemer	nts) of the set
	·	a_1, a_2, \ldots, a_n	ŕ		then the					
	(A)	15	(B)	16		(C)	17	(D)	18	
63.	The r	number of w	ays in whi	ch n	distinct o	bjects	can be put	into two di	fferent 1	boxes so that no
	box r	emains emp	ty, is:							
	(A)	$2^{n}-1$	(B)	n^2 -	-1	(C)	$2^{n}-2$	(D)	n^2 – 2	2
64.		number of fi ly three digit	Ü				•	sing digits	1, 2, 3	only, such that
	(A)	30	(B)	120		(C)	90	(D)	60	
65 .	Let a	$a_n = 10^n / n!$ for	or n≥1. Tl	nen a	ղ takes th	ne great	est value w	hen <i>n</i> equa	ls:	()
	(A)	20	(B)	18		(C)	6	(D)	9	J
66.	The r	number of tir	nes the did	sit 3 v	zill he wr	itten wl	nen listing t	he integers	from 1	to 1000 is:
.	(A)	269	(B)	300		(C)	271	(D)	302	to 1000 is.

67 .	The number of ways in which	three numbers in AP can be select	ted from 1, 2, 3,, $2n + 1$ is:

 n^2 (A)

(B)

 $(n+1)^2$ (C) $2(n+1)^2$

 $2n^2$

The unit digit of $17^{2009} + 11^{2009} + 7^{2009}$ is: 68.

> (A) 1

(B) 8 (C) 2 **(D)** 5

69. Let A and B be two sets containing 2 elements and 4 elements, respectively. The number of subsets of A × B having 3 or more elements is:

(A) 256 **(B)** 220

219 (C)

(D) 211

70. The set $S = \{1, 2, 3, ..., 12\}$ is to be partitioned into three sets A, B and C of equal size.

Thus, $A \cup B \cup C = S$, $A \cap B = B \cap C = A \cap C = \phi$

The number of ways to partition S is:

(A)

 $12!/3!(4!)^3$ (B) $12!/3!(3!)^3$ (C) $12!/(4!)^3$ (D) $12!/(3!)^4$

71. There are (n+1) white and (n+1) black balls each set numbered 1 to n+1. The number of ways in which the balls can be arranged in a row so that the adjacent balls are of different colours is:

(A) (2n+2)! **(B)** $(2n+2)! \times 2$ (C)

 $(n+1)! \times 2$

 $^{2008}C_{4}$

 $2\{(n+1)!\}^2$ (D)

72. The number of intersection points of diagonals of 2018 sides regular polygon, which lie inside the polygon.

 $^{2018}C_{4}$ (A)

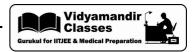
 $^{2009}C_{2}$ **(B)**

(C)

 $^{2017}C_{4}$ **(D)**

73. A parallelogram is cut by two sets of m lines parallel to the sides, the number of parallelograms thus formed is:

(B) $\frac{(m-1)^2}{4}$ **(C)** $\frac{(m+2)^2}{4}$ **(D)** $\frac{(m+2)^2(m+1)^2}{4}$


74. The number of n-digits number which contain the digits 2 and 7, but not the digits 0, 1, 8, 9 is:

 $2^{n} + 2^{n/2} - 2^{n/4}$ (A)

(B) $6^n - 2.5^n + 4^n$

 $6^{n}-2.4^{n}+5^{n}$ (C)

 $6^n - 2.4^n + 5^n$ (D)

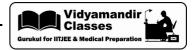
- *75. The number of ways of choosing triplet (x, y, z) such that $z \ge \max\{x, y\}$ and $x, y, z \in \{1, 2, ..., n\}$ is:
 - (A) $^{n+1}C_3 + ^{n+2}C_3$

(B) n(n+1)(2n+1)/6

(C) $1^2 + 2^2 + \dots + n^2$

- **(D)** $2\binom{n+2}{2}C_3-n+1$
- ***76.** Given that the divisors of $n = 3^p.5^q.7^r$ are of the form $4\lambda + 1, \lambda \ge 0$. Then:
 - (A) p + r is always even
- **(B)** p+q+r is always odd
- (C) q can be any integer
- **(D)** if p is odd then r is even

- ***77.** If $10! = 2^p . 3^q . 5^r . 7^s$, then:
 - **(A)** 2q = p
 - **(B)** pqrs = 64
 - (C) Number of divisors of 10! is 280
 - (D) Number of ways of putting 10! as a product of two natural numbers is 135
- 78. There are 12 points in a plane of which 5 are collinear on line L_1 , 4 collinear on another line L_2 and no other three points are collinear. The maximum number of distinct quadrilaterals which can be formed with vertices at these points is:
 - **(A)** 384
- **(B)** 385
- **(C)** 392
- **(D)** 387
- *79. If *x* be the number of 5-digit numbers, sum of whose digits is even, and *y* be the number of 5-digit numbers sum of whose digits is odd, then:
 - (A) x = y
- **(B)** x + y = 90000 **(C)**
- x = 45000
- **(D)** x < y
- *80. Number of ways of selecting three integers from $\{1, 2, 3, ..., n\}$ if their sum is divisible by 3 is:
 - **(A)** $3\binom{n/3}{3} + (n/3)^3 \text{ if } n = 3k, k \in \mathbb{N}$


- **(B)** $2\binom{(n-1)/3}{3}C_3 + \binom{(n+2)/3}{3}C_3 + ((n-1)/3)^2(n+2), \text{ if } n = 3k+1, k \in \mathbb{N}$
- (C) $2\binom{(n+1)/3}{3}C_3 + \binom{(n-2)/3}{3}C_3 + ((n+1)/3)^2(n-2)$, if $n = 3k + 2, k \in \mathbb{N}$
- **(D)** Independent of n
- *81. The maximum number of permutations of 2n letters in which there are only a's and b's, taken all at a time is given by:
 - **(A)** ${}^{2n}C_n$

(B) $\frac{2}{1} \cdot \frac{6}{2} \cdot \frac{10}{3} \cdot \dots \cdot \frac{4n-6}{n-1} \cdot \frac{4n-2}{n}$

(0)	n+1 $n+2$ $n+3$ $n+4$ $2n-1$ $2n$						(D)	$2^{n} \cdot [1.3.5(2$.(2n-3)(2n-1)
(C)	$\frac{}{1}$.	$\frac{}{2}$	3		n-1	<u>—</u>	(D)		า!

- **82.** The number of ways of choosing a committee of two women and three men from five women and six men, if Mr. *A* refuses to serve on the committee if Mr. *B* is a member and Mr. *B* can only serve, if miss *C* is the member of the committee is:
 - **(A)** 60 **(B)** 84 **(C)** 124 **(D)** None of these
- **83.** In a polygon no three diagonals are concurrent. If the total number of points of intersection of diagonals interior to the polygon be 70 then the number of diagonals of the polygon is:
 - **(A)** 20 **(B)** 28 **(C)** 8 **(D)** None of these
- **84.** Find the number of ways of distributing 5 different balls in three boxes of different sizes so that no box is empty and each box being large enough to accommodate all the five balls.
- **85.** In how many ways we can divide 52 playing cards
 - (a) among 4 players equally? (b) in 4 equal parts?
- **86.** The number of ways in which 14 identical toys can be distributed among three boys so that each one gets atleast one toy and no two boys get equal number of toys is:
- **(A)** 45 **(B)** 48 **(C)** 60 **(D)** None of these
- **87.** If the number of ways of selecting K coupons out of an unlimited number of coupons bearing the letters A, T, M so that they cannot be used to spell the word MAT is 93, then K equals to:
 - (A) 32 (B) 31 (C) 5 (D) None of these
- **88.** If a set A has m elements and another set B has n elements then number of functions from A to B:
 - **(A)** m^n **(B)** nm **(C)** n^m **(D)** 2^{nm}
- *89. The minimum marks required for clearing a certain screening paper is 210 out of 300. The screening paper consists of '3' sections each of Physics, Chemistry, and Maths. Each section has 100 as maximum marks. Assuming there is no negative marking and marks obtained in each section are integers, the number of ways in which a student can qualify the examination is: (Assuming no cut-off limit):
 - **(A)** 129766 **(B)** 93_{C_3} **(C)** 213_{C_3} **(D)** $(210)^3$
- **90.** In how many ways we can place 7 different balls in 3 different boxes such that in every box at least 2 balls are placed?
- *91. If n objects are arranged in a row, then the number of ways of selecting three of these objects so that no two of them are next to each other is:
 - (A) $\frac{(n-2)(n-3)(n-4)}{6}$ (B) $n-2C_3$ (C) $n-3C_3+n-3C_2$ (D) None of these

- **92.** Find the number of triangles whose angular points are at the angular points of a given polygon of n sides, but none of whose sides are the sides of the polygon.
- **93.** Find the number of solutions of the equation 2x + y + z = 20 where $x, y, z \ge 0$.
- **94.** Find the number of integral solutions of x + y + z + w = 20 under the following conditions:

- (i) All variables are non-negative
- (ii) All variables are non-positive
- (iii) No variable may exceed 10; zero values excluded.
- (iv) Each variable is an odd number.
- (v) Each variable has distinct positive values
- **95.** 5 balls are placed in 3 boxes. Each box can hold all 5 balls. Number of ways in which the balls can be placed if:

	List 1		List 2
(P)	Balls are identical, but boxes are different, and no box remains empty	1.	2
(Q)	Balls are different, but boxes are identical, and no box remains empty	2.	25
(R)	Balls as well as boxes are identical, and no box remains empty	3.	243
(S)	Balls are different, and boxes are different, and boxes can remain empty	4.	6

Codes:

	P	9	R	s		P	9	R	s
(A)	2	4	3	1	(B)	4	2	1	3
(C)	1	2	3	4	(D)	2	3	4	1